AN IRIDOID ACETYLALLOSIDE FROM VIBURNUM JAPONICUM

TETSUO IWAGAWA and TSUNAO HASE

Department of Chemistry, Faculty of Science, Kagoshima University, Korimoto 1-21-35, Kagoshima 890, Japan

(Revised received 2 September 1985)

Key Word Index ... Viburnum japonicum; Caprifoliaceae; iridoid acetylalloside; 2',3'-O-diacetylfurcatoside C; furcatoside A; adoxoside; bitter principle.

Abstract—A new iridoid acetylalloside, 2',3'-O-diacetylfurcatoside C along with two known iridoid glucosides, furcatoside A and adoxoside, have been isolated from Viburnum japonicum and their structures elucidated. The two former compounds are bitter to the taste.

INTRODUCTION

Viburnum japonicum L. is a small evergreen tree found in the Honshu, Kyushu and Ryukyus islands of Japan. Its leaves are very bitter. Earlier studies on the constituents of the plant revealed the presence of chavicol as a Drosophila larva-growth inhibitor [1]. However, there has been no previous work on the bitter components. We have examined the leaves of the plant and isolated a new iridoid acetylalloside (1) and furcatoside A (2) [2] as bitter principles and adoxoside (3) [3].

RESULTS AND DISCUSSION

Compound I was obtained as a bitter amorphous powder, $[\alpha]_D = 60.8^\circ$, with a molecular formula C₂₇H₄₀O₁₄·H₂O. It emitted isovaleric acid on standing and turned black with hydrochloric acid. It showed UV and IR absorptions indicative of a non-conjugated iridoid enol-ether system at 209 nm and at 1655 cm⁻¹, respectively. Its ¹H NMR spectrum showed a doublet at δ 6.14 (1H, J = 4 Hz) assignable to an acylated acetal proton at C-1 and a broad singlet at $\delta 6.40$ due to an olefinic proton at C-3 along with signals of an isovaleroyl group at $\delta 0.95$ (6H, d, J = 6 Hz), suggesting that compound 1 was a valeriana iridoid [4]. In addition, signals due to three acetoxyl groups at δ 2.03, 2.16 and 2.20 (3H each, s) were observed. On acid hydrolysis, compound I gave a black polymer and allose which was determined by paper chromatography. Treatment of 1 with acetic anhydride and pyridine afforded a penta-acetate (4), C₃₁H₄₄O₁₆, whose IR and ¹H NMR spectra were identical with those of furcatoside C acetate [2]. Thus, the position of the isovaleroyl group is located at C-1. The presence of the two acetoxyl groups in the allose moiety was confirmed by the ¹H NMR spectrum of 1. The signal at δ 5.60 (1H, m) was characteristic of an acylated proton at C-3 in allose. Irradiation at δ 5.60 caused changes in the multiplets at ca δ 4.2 and 3.88 which were assigned to protons at C-2' and C-4', respectively. These facts showed that the hydroxyl groups at C-2' and C-3' were acetylated because of their low field chemical shifts. The acetylated positions in the allose were further supported by comparison of the ¹³C NMR spectrum of the sugar parts in 1 with that of 2',3'-O-diacetylallose in opulus iridoid I [4] (see Experimental). The remaining acetoxyl group was placed at C-10. The structure of 1 is therefore furcatoside C in which the two hydroxyl groups at C-2' and C-3' are acetylated.

To establish the absolute structure of 1, it was submitted to acid methanolysis, yielding the methyl acetate (6), C₁₁H₁₆O₄ and the corresponding monoacetate (5), C₁₃H₁₈O₅, demonstrating the position of the remaining acetate group at C-10. The ¹H NMR spectrum of 5 indicated the presence of an acetoxyl group at $\delta 2.11$ (3H, s) and a methoxyl group at δ 3.47 (3H, s). An AB system at $\delta 4.20$ and 4.45 (J = 12 Hz) was due to methylene protons attached to the carbon bearing the acetoxyl group. Signals at δ 4.94 and 5.01 (br s each), and a doublet at $\delta 5.09$ (1H, J = 3 Hz) were attributable to terminal methylene protons and a C-3 proton, respectively. The above data were in agreement with those 3-acetoxymethyl-8-methoxy-10-methylene-2,9-dioxatricyclo[4.3.1.03.7]decane which had been prepared by methanolysis of furcatosides A-C [2]. The specific rotations and magnitudes of 5 (+77.8°) and 6 (+15°) (lit. + 37.5° [2]) were the same as those of other compounds having dioxatricyclo[4.3.1.0^{3.7}]decane skeletons [2, 4, 5].

Therefore, the bitter acetylalloside, which we have named 2',3'-O-diacetylfurcatoside C, is shown to have the absolute structure 1. This is the fourth example of iridoid allosides isolated from Viburnum species [2, 4, 5].

EXPERIMENTAL

Extraction and isolation. Plant material was collected in Kagoshima city and identified by Dr. S. Sako (Herbarium sample No. 7). Fresh leaves of V. japonicum (2.5 kg) were extracted with MeOH (18 l. × 2). The extracts were concentrated, diluted with H₂O and extracted with Et₂O and then EtOAc. The Et₂O extract (25 g) was subjected to CC on silica gel. Elution with CHCl₃-MeOH (97:3) gave 2'3'-O-diacetylfurcatoside C (1, 1.5 g). Furcatoside A(2, 226 mg) was obtained from the fractions eluted with CHCl₃-MeOH (19:1). The EtOAc extract (23.4 g) was chromatographed on silica gel with CHCl₃-MeOH (9:1) to

1228 Short Reports

afford adoxoside (3) (120 mg). Furcatoside A and adoxoside were identified by comparing their spectral data with those of authentic samples.

2',3'-O-Diacetylfurcatoside C (1). A bitter amorphous powder; $[\alpha]_D = 60.8^\circ$ (MeOH; c 0.185); UV λ_{max}^{MeOH} nm (e): 209 (3700); IR v film cm = 1: 3450, 1740, 1665, 1145, 1090, 1040; HNMR (100 MHz, CDCl₃): δ 0.95 (6H, d, J = 6 Hz, isovaleroyl Me groups), 2.03, 2.16 and 2.20 (3H each, s, OAc), 3. 88 (3H, m, H-4' and H-6'), 4.16 (2H, s, H-11), 4.20-4.36 (2H, m, H-1' and H-2'), 4.83 (2H, s, H-10), 5.60 (1H, m, H-3'), 6.18 (1H, d, J = 4 Hz, H-1),6.40 (1H, s (br), H-3); 13C NMR (25.05 Hz, CDCl₃); δ20.8 (MeCOO × 3), 22.3, 25.7 and 43.4 (Me₂CHCH₂COO), 28.4 (C-6), 35.1 (C-5), 37.5 (C-7), 45.8 (C-9), 62.4 (C-6'), 66.6 (C-4'), 68.9 (C-11), 70.0 (C-10), 70.8 (C-2), 71.3 (C-3'), 74.0 (C-5'), 80.3 (C-8), 89.8 (C-1), 97.4 (C-1'), 113.3 (C-4), 140.1 (C-3), 169.6, 171.0, 171.3 and 171.5 (COO × 4); MS m/z (rel. int.); no [M]*, 331 (0.9), 247 (0.7), 222 (4), 180 (25), 134 (100), 85 (96). (Found: C, 53.20; H, 6.72°_{o} . Calc. for $C_{27}H_{40}O_{14}^{\circ}H_{2}O$: C, 53.48; H, 6.93%.) Compound 1 (7 mg) was hydrolysed by refluxing with 2 M HCl (0.5 ml) for 4 hr. The resulting black precipitate was filtered off and the aq. soln was neutralized with Amberlite IRA-45 (10 g). The presence of allose in the resiude was confirmed by co-PC (solvent system: EtOAc-pyridine-H2O-HOAc, 5:5:3:1).

Acetylation of 1. A soln of 1 (41 mg) in Ac_2O and C_3H_3N was allowed to stand at room temp. The crude product was chromatographed on silica gel with CHCl₃-MeOH (99:1) to give an amorphous powder 4 (41 mg); IR v_{\min}^{dim} cm⁻¹: 3500, 1745, 1665, 1225, 1100, 1040, ¹H NMR (100 MHz CDCl₃); δ 0.95, (6H, d, J = 6 Hz), isovaleroyl Me groups), 1.99 (6H, s, OAc), 2.06, 2.11 and 2.16 (3H each, s, OAc), 4.03 and 4.82 (2H each, s, H-11 and H-10), 5.62 (1H, m, H-3'), 6.20 (1H, d, J = 4 Hz, H-1), 6.38 (1H, s (br), H-3). (Found: C, 55.75; H, 6.65° o. Calc. for $C_{31}H_{44}O_{16}$: C, 55.35; H, 6.59° o.)

Methanolysis of 1. To a soln of 1 (50 mg) in dry MeOH (1 ml), was added a catalytic amount of conc. HCl and the mixture was stirred at 50° for 30 min under N2. The reaction mixture was diluted with H₂O, extracted with EtO₂ and washed with H₂O and brine. CC of the crude product on silica gel with CHCl₃-hexane (1:1) gave a mono-acetate (5, 2.7 mg) and an alcohol (6, 2 mg). Compound 5, an oil; $[\alpha]_D + 77.8^\circ$ (CHCl₃; c 0.135): IR v mm cm -1: 1740, 1660, 1220, 1070, 950; HNMR (100 MHz, CDCl₃): 82.11 (3H, s, OAc), 3.47 (3H, s, OMe), 4.20 and 4.45 (AB, J = 12 Hz, H-11), 4.94 and 5.01 (1H, each, s (br), H-10), 5.09 (1H, d, J = 3 Hz, H-8), 5.16 (1H s (br), H-1). (Found: m/z254.1169. Calc. for C₁₃H₁₈O₅: m/z 254.1154.) Compound 6, an oil; $[\alpha]_D + 15^\circ$ (CHCl₃; c 0.1); IR v_{max}^{him} cm⁻¹: 3450, 1660, 1120, 1060, 960; 1H NMR (100 MHz, CDCl3); 63.44 (3H, 5, OMe), 4.94 and 5.02 (1H each, s (br), H-11), 5.20 (1H, s, H-3), 5.27 (1H, d, J = 2 Hz, H-8). (Found: m/z 212.1008. Calc. for $C_{11}H_{16}O_4$: m/z212.1048.)

Furcatoside A (2). A bitter amorphous powder; IR $v_{\text{max}}^{\text{film}}$ cm⁻¹: 3400, 1630, 1600, 1580, 1510, 830; ¹H NMR (100 MHz, Me₂CO-d₀): δ 0.93 (6H, d, J=6 Hz, isovaleroyl Me groups), 2.00 (3H, s, OAc), 5.10 (1H, d, J=8 Hz, H-1'), 6.17 (1H, d, J=6 Hz, H-1), 6.46 (1H, s (br), H-3), 6.42 and 7.80 (AB, J=16 Hz, -CH=CH-), 6.98 and 7.62 (AA, BB, J=8 Hz, Ar-H).

Adoxoside (3). An amorphous powder; $[\alpha]_D = 49.3^\circ$ (MeOH; c 0.487); UV λ_{max}^{MeOH} nm (a): 236 (8500); IR ν_{max}^{dim} cm⁻¹: 3400, 1690, 1620; ¹H NMR (200 MHz, CD₃OD): δ 3.70 (3H, s, COOMe), 4.66 (1H, d, J = 8 Hz, H-1'), 5.17 (1H, d, J = 6 Hz, H-1), 7.46 (1H, d-like J = 1 Hz, H-3). (Found: C, 51.32; H, 6.86%. Calc. for C_{1.7}H₂₆O₁₀·1.2 H₂O: C, 51.12; H, 6.81%.) Acetylation of 3 gave needles from EtOH, mp 140.5–141.5°; IR ν_{max}^{lim} cm⁻¹: 1750, 1710, 1630; ¹H NMR (100 MHz, CDCl₃): δ 1.94, 2.00, 2.04, 2.07 and 2.09 (3H each, s, OAc), 3.72 (3H, s, COOMe), 4.05 (2H, d,J = 6 Hz, H-10), 7.40 (1H, s (br), H-3).

Acknowledgements—We thank to Prof. S. R. Jensen, The Technical University of Denmark, for providing NMR spectra of adoxoside and its acetate and Dr. K. Matsuo, Kinki University, for NMR spectral measurements. We are grateful to Dr. S. Sako, Kagoshiama University, for identification of the plant material and Dr. S. Eguchi, Hiroshima University, for elementary analysis.

REFERENCES

1. Ohigashi, H. and Koshimizu, K. (1976) Agric. Biol. Chem. 40,

2283.

- Hase, T., Iwagawa, T. and Muanza Nkongolo, D. (1985) Phytochemistry 24, 1323.
- Jensen, S. R. and Nielsen, B. J. (1979) Biochem. Syst. Ecol. 7, 103.
- Bock, K., Jensen, S. R., Nielsen, B. J. and Norn, V. (1978) Phytochemistry 17, 753.
- Jensen, S. R., Nielsen, B. J. and Norn, V. (1985) Phytochemistry 24, 487.

Phytochemistry, Vol. 25, No. 5, pp. 1229-1230, 1986. Printed in Great Britain.

0031-9422.86 \$3.00 + 0.00 © 1986 Pergamon Press Ltd.

GERMACRANOLIDES FROM ANVILLEA GARCINI

A. RUSTAIYAN, M. DABIRI and J. JAKUPOVIC®

Department of Chemistry, Shahid Beheshty University, Eveen, Teheran, Iran; *Institute for Organic Chemistry, Technical University of Berlin, D-1000 Berlin 12, West Germany

(Received 12 August 1985)

Key Word Index - Anvillea garcini; Compositae; sesquiterpene lactones; germacranolides.

Abstract—The aerial parts of Anvillea garcini afforded three germacranolides, two of which had not being isolated previously. The structures were elucidated by ¹H NMR spectroscopy. The configuration of 9-acetoxy parthenolide at C-9 has been revised.

INTRODUCTION

The small genus Anvillea (tribe Inuleae, subtribe Inulinae) is placed in the Inula group [1]. From A. garcini (Burm.) DC flavones [2] and 9α -hydroxyparthenolide (1)[3] were reported. A reinvestigation of a sample collected in the South of Iran gave in addition to 9α -hydroxyparthenolide (1), two further lactones, 2 (the epimer of 1) and 3 (the epoxide of 2). The structures were elucidated by high field ¹H NMR spectroscopy.

RESULTS AND DISCUSSION

The spectrum of 2 (Table 1) was in part close to that of 1, apart from the H-9 signal which showed a very different splitting pattern. Spin decoupling allowed the assignment of all signals. Irradiation of the five-fold doublet at $\delta 2.86$ collapsed the H-13 doublets to singlets and therefore were due to H-7. The latter was further coupled with three-fold doublets at $\delta 2.11$ and 2.01. As the corresponding protons were further coupled with the double doublet at $\delta 4.27$ (H-9) and H-7 also was coupled with the triplet at $\delta 3.86$ (H-6), which itself collapsed to a doublet on irradiation of the doublet at $\delta 2.69$ (H-5) the whole sequence H-5-H-9 was settled. The signals of H-1-H-3 were nearly identical with those of 1, accordingly, the structure and the stereochemistry of 2 were settled and the structure of a lactone from

Matricaria suffruticosa which was errously given as the acetate of 2 [4] has to be revised to 9α -acetoxy-parthenolide, the acetate of 1 as the couplings of H-9 are small.

The ¹H NMR spectrum of 3 (Table 1) indicated that this lactone had no olefinic double bonds. Spin decoupling allowed the assignment of all signals though a few were overlapping multiplets. A multiplet at $\delta 2.83$ (H-7) was coupled with the doublets at $\delta 6.38$ and 5.70 as well as with the triplet at $\delta 3.94$ (H-6), the threefold doublet at $\delta 1.89$ (H-8) and the multiplet at $\delta 2.28$ (H-8). A double doublet at $\delta 3.28$ was coupled with H-8 and therefore was due to H-9.